Estimation

State space model hyper parameters optimization routines.

Maximum Likelihood

StateSpace.maximum_likelihood!Function
maximum_likelihood!(model; init=NamedTuple(), method=:collapsed, pen=NoPen(), ϵ_abs=1e-7, ϵ_rel=1e-4, max_iter=1000)

Maximum Likelihood (ML) algorithm to estimate the hyper parameters of a linear Gaussian State Space model as defined by model, results are stored in model. Penalized ML estimation is allowed through pen. If pen` = NoPen()`` the optimization routine is L-BFGS, whenpen≂̸ NoPen()` optimization is doen through ADMM.

Arguments

  • model::StateSpaceModel: state space model
  • init::NamedTuple : initial model parameters
  • method::Symbol : filtering method
  • pen::Penalization : penalization type
  • ϵ_abs::Real : absolute tolerance
  • ϵ_rel::Real : relative tolerance
  • max_iter::Integer : max number of iterations

Returns

  • ll::Real : log-likelihood value
source

Expectation-Maximization

StateSpace.em!Function
em!(model, pen; init=NamedTuple(), ϵ=1e-4, max_iter=1000)

Expectation-Maximization (EM) algorithm to estimate the hyper parameters of a linear Gaussian State Space model as defined by model, storing the results in model.

Arguments

  • model::StateSpaceModel: state space model
  • pen::NamedTuple : penalization parameters
  • method::Symbol : filtering method
  • init::NamedTuple : initial model parameters
  • ϵ::Real : tolerance
  • max_iter::Integer : max number of iterations

Returns

  • ll::Real : log-likelihood value
source
StateSpace.ecm!Function
ecm!(model, pen; init=NamedTuple(), ϵ=1e-4, max_iter=1000)

Expectation-Conditional Maximization (ECM) algorithm to estimate the hyper parameters of a linear Gaussian State Space model as defined by model, results are stored in model.

Arguments

  • model::StateSpaceModel: state space model
  • pen::NamedTuple : penalization parameters
  • method::Symbol : filtering method
  • init::NamedTuple : initial model parameters
  • ϵ::Real : tolerance
  • max_iter::Integer : max number of iterations

Returns

  • ll::Real : log-likelihood value
source