Estimation
State space model hyper parameters optimization routines.
Maximum Likelihood
StateSpace.maximum_likelihood!
— Functionmaximum_likelihood!(model; init=NamedTuple(), method=:collapsed, pen=NoPen(), ϵ_abs=1e-7, ϵ_rel=1e-4, max_iter=1000)
Maximum Likelihood (ML) algorithm to estimate the hyper parameters of a linear Gaussian State Space model as defined by model
, results are stored in model
. Penalized ML estimation is allowed through pen
. If pen` = NoPen()`` the optimization routine is L-BFGS, when
pen≂̸ NoPen()
` optimization is doen through ADMM.
Arguments
model::StateSpaceModel
: state space modelinit::NamedTuple
: initial model parametersmethod::Symbol
: filtering methodpen::Penalization
: penalization typeϵ_abs::Real
: absolute toleranceϵ_rel::Real
: relative tolerancemax_iter::Integer
: max number of iterations
Returns
ll::Real
: log-likelihood value
Expectation-Maximization
StateSpace.em!
— Functionem!(model, pen; init=NamedTuple(), ϵ=1e-4, max_iter=1000)
Expectation-Maximization (EM) algorithm to estimate the hyper parameters of a linear Gaussian State Space model as defined by model
, storing the results in model
.
Arguments
model::StateSpaceModel
: state space modelpen::NamedTuple
: penalization parametersmethod::Symbol
: filtering methodinit::NamedTuple
: initial model parametersϵ::Real
: tolerancemax_iter::Integer
: max number of iterations
Returns
ll::Real
: log-likelihood value
StateSpace.ecm!
— Functionecm!(model, pen; init=NamedTuple(), ϵ=1e-4, max_iter=1000)
Expectation-Conditional Maximization (ECM) algorithm to estimate the hyper parameters of a linear Gaussian State Space model as defined by model
, results are stored in model
.
Arguments
model::StateSpaceModel
: state space modelpen::NamedTuple
: penalization parametersmethod::Symbol
: filtering methodinit::NamedTuple
: initial model parametersϵ::Real
: tolerancemax_iter::Integer
: max number of iterations
Returns
ll::Real
: log-likelihood value