Proximal Operators
The proximal operator for a variety of commonly used functions in optimization, data science, machine learning, and econometrics.
$\ell_{1}$-norm
ProximalMethods.soft_thresh
— Functionsoft_thresh(x, λ)
Compute soft thresholding operator with scaling parameter λ
at x
, proximal operator of $ℓ₁$-norm.
Arguments
x::Real
: inputλ::Real
: scaling parameter
Returns
y::Real
: soft thresholded value
$\ell_{2}$-norm
ProximalMethods.block_soft_thresh
— Functionblock_soft_thresh(x, λ)
Compute block soft thresholding operator with scaling parameter λ
at x
, proximal operator of the $ℓ₂$-norm.
Arguments
x::AbstractVector
: input (n x 1)λ::Real
: scaling parameter
Returns
y::AbstractVector
: block soft thresholded value (n x 1)
ProximalMethods.block_soft_thresh!
— Functionblock_soft_thresh!(y, x, λ)
Compute block soft thresholding operator with scaling parameter λ
at x
, proximal operator of the $ℓ₂$-norm, storing the results in y
. See also block_soft_thresh
.
block_soft_thresh!(x, λ)
Compute block soft thresholding operator with scaling parameter λ
at x
, proximal operator of the $ℓ₂$-norm, overwriting x
. See also block_soft_thresh
.
$\ell^{2}_{2}$-norm (ridge)
ProximalMethods.shrinkage
— Functionshrinkage(x, λ)
Compute shrinkage operator with scaling parameter λ
at x
, proximal operator of the squared ℓ₂-norm (ridge).
Arguments
x::Real
: inputλ::Real
: scaling parameter
Returns
y::Real
: shrunken value
shrinkage(x, λ, fac, b)
Compute the generalized shrinkage operator with scaling parameter λ
at x
, proximal operator of a quadratic function with quadratic parameters A
and linear parameters b
using a factorization fac
of $I + λA$.
Arguments
x::AbstractVector
: inputλ::Real
: scaling parameterfac::Factorization
: factorization of $I + λA$b::AbstractVector
: linear coefficients
Returns
y::AbstractVector
: shrunken values
shrinkage(x, λ, A, b)
Compute the generalized shrinkage operator with scaling parameter λ
at x
, proximal operator of a quadratic function with quadratic parameters A
and linear parameters b
.
Arguments
x::AbstractVector
: inputλ::Real
: scaling parameterA::AbstractMatrix
: quadratic coefficientsb::AbstractVector
: linear coefficients
Returns
y::AbstractVector
: shrunken values
ProximalMethods.shrinkage!
— Functionshrinkage!(x, λ, fac, b)
Compute the generalized shrinkage operator with scaling parameter λ
at x
, proximal operator of a quadratic function with quadratic parameters A
and linear parameters b
using a factorization fac
of $I + λA$, overwriting x
. See also shrinkage
.
shrinkage!(x, λ, A, b)
Compute the generalized shrinkage operator with scaling parameter λ
at x
, proximal operator of a quadratic function with quadratic parameters A
and linear parameters b
, overwriting x
. See also shrinkage
.
Smooth function
ProximalMethods.smooth
— Functionsmooth(x, λ, f, ∇f!, y_prev)
Compute the proximal operator of a general smooth function f
with in-place gradient ∇f!
and scaling parameter λ
at x
using L-BFGS. Warm starting is accomodated by the use of y_prev
, the previous solution.
Arguments
x::AbstractVector
: inputλ::Real
: scaling parameterf::Function
: objective function∇f!::Function
: gradienty_prev::AbstractVector
: previous output
Returns
y::AbstractVector
: output
ProximalMethods.smooth!
— Functionsmooth!(y, x, λ, f, ∇f!, y_prev)
Compute the proximal operator of a general smooth function f
with in-place gradient ∇f!
and scaling parameter λ
at x
using L-BFGS, storing the results in y
. See also smooth!
. Warm starting is accomodated by the use of y_prev
, the previous solution.
smooth!(x, λ, f, ∇f!, y_prev)
Compute the proximal operator of a general smooth function f
with in-place gradient ∇f!
and scaling parameter λ
at x
using L-BFGS, overwriting x
. See also smooth!
. Warm starting is accomodated by the use of y_prev
, the previous solution.