Proximal Operators

The proximal operator for a variety of commonly used functions in optimization, data science, machine learning, and econometrics.

$\ell_{1}$-norm

ProximalMethods.soft_threshFunction
soft_thresh(x, λ)

Compute soft thresholding operator with scaling parameter λ at x, proximal operator of $ℓ₁$-norm.

Arguments

  • x::Real : input
  • λ::Real : scaling parameter

Returns

  • y::Real : soft thresholded value
source

$\ell_{2}$-norm

ProximalMethods.block_soft_threshFunction
block_soft_thresh(x, λ)

Compute block soft thresholding operator with scaling parameter λ at x, proximal operator of the $ℓ₂$-norm.

Arguments

  • x::AbstractVector : input (n x 1)
  • λ::Real : scaling parameter

Returns

  • y::AbstractVector : block soft thresholded value (n x 1)
source
ProximalMethods.block_soft_thresh!Function
block_soft_thresh!(y, x, λ)

Compute block soft thresholding operator with scaling parameter λ at x, proximal operator of the $ℓ₂$-norm, storing the results in y. See also block_soft_thresh.

source
block_soft_thresh!(x, λ)

Compute block soft thresholding operator with scaling parameter λ at x, proximal operator of the $ℓ₂$-norm, overwriting x. See also block_soft_thresh.

source

$\ell^{2}_{2}$-norm (ridge)

ProximalMethods.shrinkageFunction
shrinkage(x, λ)

Compute shrinkage operator with scaling parameter λ at x, proximal operator of the squared ℓ₂-norm (ridge).

Arguments

  • x::Real : input
  • λ::Real : scaling parameter

Returns

  • y::Real : shrunken value
source
shrinkage(x, λ, fac, b)

Compute the generalized shrinkage operator with scaling parameter λ at x, proximal operator of a quadratic function with quadratic parameters A and linear parameters b using a factorization fac of $I + λA$.

Arguments

  • x::AbstractVector : input
  • λ::Real : scaling parameter
  • fac::Factorization: factorization of $I + λA$
  • b::AbstractVector : linear coefficients

Returns

  • y::AbstractVector : shrunken values
source
shrinkage(x, λ, A, b)

Compute the generalized shrinkage operator with scaling parameter λ at x, proximal operator of a quadratic function with quadratic parameters A and linear parameters b.

Arguments

  • x::AbstractVector : input
  • λ::Real : scaling parameter
  • A::AbstractMatrix : quadratic coefficients
  • b::AbstractVector : linear coefficients

Returns

  • y::AbstractVector : shrunken values
source
ProximalMethods.shrinkage!Function
shrinkage!(x, λ, fac, b)

Compute the generalized shrinkage operator with scaling parameter λ at x, proximal operator of a quadratic function with quadratic parameters A and linear parameters b using a factorization fac of $I + λA$, overwriting x. See also shrinkage.

source
shrinkage!(x, λ, A, b)

Compute the generalized shrinkage operator with scaling parameter λ at x, proximal operator of a quadratic function with quadratic parameters A and linear parameters b, overwriting x. See also shrinkage.

source

Smooth function

ProximalMethods.smoothFunction
smooth(x, λ, f, ∇f!, y_prev)

Compute the proximal operator of a general smooth function f with in-place gradient ∇f! and scaling parameter λ at x using L-BFGS. Warm starting is accomodated by the use of y_prev, the previous solution.

Arguments

  • x::AbstractVector : input
  • λ::Real : scaling parameter
  • f::Function : objective function
  • ∇f!::Function : gradient
  • y_prev::AbstractVector: previous output

Returns

  • y::AbstractVector : output
source
ProximalMethods.smooth!Function
smooth!(y, x, λ, f, ∇f!, y_prev)

Compute the proximal operator of a general smooth function f with in-place gradient ∇f! and scaling parameter λ at x using L-BFGS, storing the results in y. See also smooth!. Warm starting is accomodated by the use of y_prev, the previous solution.

source
smooth!(x, λ, f, ∇f!, y_prev)

Compute the proximal operator of a general smooth function f with in-place gradient ∇f! and scaling parameter λ at x using L-BFGS, overwriting x. See also smooth!. Warm starting is accomodated by the use of y_prev, the previous solution.

source